Ir al contenido principalSkip to Xpert Chatbot

DelftX: Machine Learning for Semiconductor Quantum Devices

Learn how to deploy artificial intelligence to control and calibrate semiconductor quantum computing chips

Machine Learning for Semiconductor Quantum Devices
6 semanas
6–7 horas por semana
A tu ritmo
Avanza a tu ritmo
Gratis
Verificación opcional disponible

Hay una sesión disponible:

Una vez finalizada la sesión del curso, será archivadoAbre en una pestaña nueva.
Comienza el 14 nov

Sobre este curso

Omitir Sobre este curso

Quantum computing is a fast-growing technology and semiconductor chips are one of the most promising platforms for quantum devices.
The current bottleneck for scaling is the ability to control semiconductor computing chips quickly and efficiently.

This course, aimed at students with experience equivalent to a master’s degree in physics, computer science or electrical engineering introduces hands-on machine learning examples for the application of machine learning in the field of semiconductor quantum devices. Examples include coarse tuning into the correct quantum dot regime, specific charge state tuning, fine tuning and unsupervised quantum dot data analysis.

After the completion of the course students will be able to

  1. assess the suitability of machine learning for specific qubit tuning or control task and
  2. implement a machine learning prototype that is ready to be embedded into their experimental or theoretical quantum research and engineering workflow.

De un vistazo

Lo que aprenderás

Omitir Lo que aprenderás
  1. To understand the utility of machine learning in tuning of semiconductor quantum devices
  2. To formulate various stages of tuning as a machine learning problem
  3. To develop and implement in Python a machine learning prototype for variety of semiconductor qubit tuning tasks
  4. To assess the suitability of machine learning in specific semiconductor quantum computing experimental workflows

Plan de estudios

Omitir Plan de estudios

Week 0: Introduction to the course and self-study of the prerequisites

Week 1: Supervised learning for quantum dot configuration tuning

  • Review of neural networks
  • Formulate configuration tuning as a neural network learning task
  • Applicability for quantum experiments
  • Coding demonstration: Supervised supervised neural network configuration classification

Week 2: Charge tuning with neural networks

  • Introduction to charge tuning
  • Tuning to specific charge states as supervised neural network with feedback loop
  • Experimental charge tuning
  • Coding demonstration: Charge charge state preparation using neural network with feedback loop
  • Midterm exam (multiple choice)

Week 3: Unsupervised learning for analysis of quantum dot data

  • Introduction to unsupervised learning
  • Clustering methods for analysis of charge stability diagrams
  • Outlook and applicability to experimental systems
  • Coding demonstration: kernel-PCA clustering of charge stability data

Week 4: Fine-tuning with neural networks

  • Introduction to fine-tuning
  • Fine Fine-tuning as a Hamiltonian learning problem
  • Experimental fine-tuning
  • Coding demonstration: Hamiltonian learning for qubit characterization

Week 5: Conclusion and Recap

  • Overview of the techniques and applications
  • Outlook for artificial intelligence as a tool for control and calibration of quantum devices
  • Final exam - multiple choice and optional project (video brief) with a forum for questions

Preguntas frecuentes

Omitir Preguntas frecuentes

I am a machine learning expert, but don’t know much about semiconductor qubits. Can I still take this course?
Yes, but we recommended that you first follow Quantum dot qubits

I am a quantum device expert, but don’t know much about machine learning. Can I still take this course?
Yes, but we recommend spending Week 0 following the recommended pre-requisites closely to get the maximum benefit from the course.

¿Quién puede hacer este curso?

Lamentablemente, las personas residentes en uno o más de los siguientes países o regiones no podrán registrarse para este curso: Irán, Cuba y la región de Crimea en Ucrania. Si bien edX consiguió licencias de la Oficina de Control de Activos Extranjeros de los EE. UU. (U.S. Office of Foreign Assets Control, OFAC) para ofrecer nuestros cursos a personas en estos países y regiones, las licencias que hemos recibido no son lo suficientemente amplias como para permitirnos dictar este curso en todas las ubicaciones. edX lamenta profundamente que las sanciones estadounidenses impidan que ofrezcamos todos nuestros cursos a cualquier persona, sin importar dónde viva.

Este curso es parte del programa Quantum 301: Quantum Computing with Semiconductor Technology Professional Certificate

Más información 
Instrucción por expertos
2 cursos de capacitación
A tu ritmo
Avanza a tu ritmo
3 meses
6 - 7 horas semanales

¿Te interesa este curso para tu negocio o equipo?

Capacita a tus empleados en los temas más solicitados con edX para Negocios.