Ir al contenido principalSkip to Xpert Chatbot

UCSanDiegoX: Data Structures Fundamentals

Learn about data structures that are used in computational thinking – both basic and advanced.

Data Structures Fundamentals
6 semanas
8–10 horas por semana
A tu ritmo
Avanza a tu ritmo
Gratis
Verificación opcional disponible

Hay una sesión disponible:

¡Ya se inscribieron 54,670! Una vez finalizada la sesión del curso, será archivadoAbre en una pestaña nueva.
Comienza el 1 nov

Sobre este curso

Omitir Sobre este curso

A good algorithm usually comes together with a set of good data structures that allow the algorithm to manipulate the data efficiently. In this course, part of the Algorithms and Data Structures MicroMasters program, we consider the common data structures that are used in various computational problems. You will learn how these data structures are implemented in different programming languages and will practice implementing them in our programming assignments. This will help you to understand what is going on inside a particular built-in implementation of a data structure and what to expect from it. You will also learn typical use cases for these data structures.

A few examples of questions that we are going to cover in this course are:

  1. What is a good strategy of resizing a dynamic array?
  2. How priority queues are implemented in C++, Java, and Python?
  3. How to implement a hash table so that the amortized running time of all operations is O(1) on average?
  4. What are good strategies to keep a binary tree balanced?

We look forward to seeing you in this course! We know it will make you a better programmer.

De un vistazo

  • Institution UCSanDiegoX
  • Subject Informática
  • Level Intermediate
  • Prerequisites

    Basic grasp of:

    • One programming language (C,C++,C#,Haskell,Java,JavaScript,Python2/3,Ruby,Scala)-loop, array, stack, recursion
    • Math-proof by induction and contradiction
    • The Algorithmic Design and Techniques class
  • Language English
  • Video Transcript English
  • Associated programs
  • Associated skillsPython (Programming Language), Algorithms, Priority Queue, Data Structures, Java (Programming Language), C++ (Programming Language), Operations, Computational Thinking

Lo que aprenderás

Omitir Lo que aprenderás
  • Basics of data structures including their fundamental building blocks: arrays and linked lists
  • How to use Dynamic arrays
  • A very powerful and widely used technique called hashing and its applications
  • How to use priority queues to efficiently schedule jobs, in the context of a computer operating system or real life
  • Basic structure of binary search trees - AVL trees and Splay trees
  • Applications of data structures

Plan de estudios

Omitir Plan de estudios

Module 1: Basic Data Structures
In this module, you will learn about the basic data structures used throughout the rest of this course. We start this module by looking in detail at the fundamental building blocks: arrays and linked lists. From there, we build up two important data structures: stacks and queues. Next, we look at trees: examples of how they’re used in Computer Science, how they’re implemented, and the various ways they can be traversed. Once you’ve completed this module, you will be able to implement any of these data structures, as well as have a solid understanding of the costs of the operations, as well as the tradeoffs involved in using each data structure.

Module 2: Dynamic Arrays and Amortized Analysis
In this module, we discuss Dynamic Arrays: a way of using arrays when it is unknown ahead-of-time how many elements will be needed. Here, we also discuss amortized analysis: a method of determining the amortized cost of an operation over a sequence of operations. Amortized analysis is very often used to analyse performance of algorithms when the straightforward analysis produces unsatisfactory results, but amortized analysis helps to show that the algorithm is actually efficient. It is used both for Dynamic Arrays analysis and will also be used in the end of this course to analyze Splay trees.

Module 3: Priority Queues and Disjoint Set Union
We start this module by considering priority queues which are used to efficiently schedule jobs, either in the context of a computer operating system or in real life, to sort huge files, which is the most important building block for any Big Data processing algorithm, and to efficiently compute shortest paths in graphs, which is a topic we will cover in our next course. For this reason, priority queues have built-in implementations in many programming languages, including C++, Java, and Python. We will see that these implementations are based on a beautiful idea of storing a complete binary tree in an array that allows to implement all priority queue methods in just few lines of code. We will then switch to disjoint sets data structure that is used, for example, in dynamic graph connectivity and image processing. We will see again how simple and natural ideas lead to an implementation that is both easy to code and very efficient. By completing this module, you will be able to implement both these data structures efficiently from scratch.

Modules 4 and 5: Hash Tables
In this module you will learn about very powerful and widely used technique called hashing. Its applications include implementation of programming languages, file systems, pattern search, distributed key-value storage and many more. You will learn how to implement data structures to store and modify sets of objects and mappings from one type of objects to another one. You will see that naive implementations either consume huge amount of memory or are slow, and then you will learn to implement hash tables that use linear memory and work in O(1) on average!

Module 6: Binary Search Trees
In this module we study binary search trees, which are a data structure for doing searches on dynamically changing ordered sets. You will learn about many of the difficulties in accomplishing this task and the ways in which we can overcome them. In order to do this you will need to learn the basic structure of binary search trees, how to insert and delete without destroying this structure, and how to ensure that the tree remains balanced.

Testimonios de los estudiantes

Omitir Testimonios de los estudiantes

“I found the assignments challenging in the absolute best sense of the term, and therefore incredibly rewarding! I've been an educator before, and my own impression of the assignments was that they were extremely well designed: it was impossible to pass them without knowing what you were doing.”
-- Previous Student

¿Quién puede hacer este curso?

Lamentablemente, las personas residentes en uno o más de los siguientes países o regiones no podrán registrarse para este curso: Irán, Cuba y la región de Crimea en Ucrania. Si bien edX consiguió licencias de la Oficina de Control de Activos Extranjeros de los EE. UU. (U.S. Office of Foreign Assets Control, OFAC) para ofrecer nuestros cursos a personas en estos países y regiones, las licencias que hemos recibido no son lo suficientemente amplias como para permitirnos dictar este curso en todas las ubicaciones. edX lamenta profundamente que las sanciones estadounidenses impidan que ofrezcamos todos nuestros cursos a cualquier persona, sin importar dónde viva.

Este curso es parte del programa Algorithms and Data Structures MicroMasters

Más información 
Instrucción por expertos
8 cursos de nivel universitario
A tu ritmo
Avanza a tu ritmo
9 meses
8 - 10 horas semanales

¿Te interesa este curso para tu negocio o equipo?

Capacita a tus empleados en los temas más solicitados con edX para Negocios.