Ir al contenido principalSkip to Xpert Chatbot

RWTHx: Automated and Connected Driving Challenges

4.4 stars
12 ratings

The MOOC "Automated and Connected Driving Challenges (ACDC)" introduces participants to some of the latest research challenges and provides the possibility to develop and test automated and connected driving functions step by step.

15 semanas
3–8 horas por semana
A tu ritmo
Avanza a tu ritmo
Gratis
Verificación opcional disponible

Hay una sesión disponible:

Una vez finalizada la sesión del curso, será archivadoAbre en una pestaña nueva.
Comienza el 13 nov

Sobre este curso

Omitir Sobre este curso

Automated and connected driving is a major topic in automotive research and industry at the moment. The MOOC "Automated and Connected Driving Challenges (ACDC)" introduces participants to some of the latest research challenges and provides the possibility to develop and test automated and connected driving functions step by step.

This course first provides a comprehensive introduction to the Robot Operating System (ROS), which is a popular software framework for automated vehicle prototypes. On this basis, participants then learn how to develop and integrate modules for sensor data processing, object fusion & tracking, vehicle guidance, and connected driving. In particular, this MOOC allows participants to

  • develop functions for automated and connected vehicles using Python and C++;
  • integrate their developed functions into the Robot Operating System (ROS);
  • train neural networks for environment perception tasks using TensorFlow;
  • learn how to use tools like: Linux, Terminal, Docker, ROS, RVIZ, Juypter Notebooks, Git.

At the end of the course, you may optionally choose from a provided list of open research challenges and start working on your own contribution to automated and connected driving.

De un vistazo

  • Institution RWTHx
  • Subject Ingeniería
  • Level Advanced
  • Prerequisites
    • Basic programming skills with Python and C++ are advantageous
    • Basic skills in using Linux and command line interfaces are advantageous
  • Language English
  • Video Transcript English
  • Associated skillsResearch, Artificial Neural Networks, Python (Programming Language), TensorFlow, Docker (Software), C++ (Programming Language), Data Processing, Robot Operating Systems, Linux Console

Lo que aprenderás

Omitir Lo que aprenderás

After completing the course, you will be able to

  • contribute to current research challenges in automated and connected driving;
  • program functions for automated and connected driving using Python & C++;
  • integrate your developed functions into the Robot Operating System;
  • train neural networks, e.g. with TensorFlow;
  • evaluate your developed functions.

Plan de estudios

Omitir Plan de estudios

Week 1-3: Introduction & Tools

  • Introduction to current challenges in automated and connected driving
  • Introduction to the course tools and setup
  • Introduction to the Robot Operating System (ROS1 & ROS2 Outlook)

Week 4-7: Sensor Data Processing

  • Introduction to Sensor Data Processing
  • Semantic Camera Image Segmentation
  • Semantic Point Cloud Segmentation
  • Object Detection in Point Clouds
  • Occupancy Grid Mapping using Point Clouds
  • Camera-based Semantic Grid Mapping
  • Vehicle Localization

Week 8-9: Object Fusion and Tracking

  • Introduction to Object Fusion and Tracking
  • Object Prediction
  • Object Association
  • Object Fusion

Week 10-11: Vehicle Guidance

  • Introduction to Vehicle Guidance
  • Navigation-Level
  • Guidance-Level
  • Stabilization-Level

Week 12-13: Connected Driving

  • Introduction to Connected Driving
  • Collective Cloud Functions
  • V2I-Communication

Week 14-15: Final Exam Period

  • We suggest you take between one and two weeks to recap the materials of the course and then to finish the exam. Of course, you may take the exam whenever you prefer, if you completed the course earlier than planned.

(Optional) Week 14+

  • Self-paced work on an automated and connected driving challenge you may choose
  • List of challenges, instructions, data, supporting materials are provided
  • Challenges can be tackled alone or in groups
  • Your results may be published on your personal GitHub page

¿Quién puede hacer este curso?

Lamentablemente, las personas residentes en uno o más de los siguientes países o regiones no podrán registrarse para este curso: Irán, Cuba y la región de Crimea en Ucrania. Si bien edX consiguió licencias de la Oficina de Control de Activos Extranjeros de los EE. UU. (U.S. Office of Foreign Assets Control, OFAC) para ofrecer nuestros cursos a personas en estos países y regiones, las licencias que hemos recibido no son lo suficientemente amplias como para permitirnos dictar este curso en todas las ubicaciones. edX lamenta profundamente que las sanciones estadounidenses impidan que ofrezcamos todos nuestros cursos a cualquier persona, sin importar dónde viva.

¿Te interesa este curso para tu negocio o equipo?

Capacita a tus empleados en los temas más solicitados con edX para Negocios.