Ir al contenido principalSkip to Xpert Chatbot

StanfordOnline: R Programming Fundamentals

4.4 stars
48 ratings

This course covers the basics of R: a free programming language and software environment used for statistical computing and graphics. R is widely used by data analysts, statisticians, and data scientists around the world. This course covers an introduction to R, from installation to basic statistical functions. You will learn to work with variable and external data sets, write functions, and hear from one of the co-creators of the R language, Robert Gentleman.

R Programming Fundamentals
6 semanas
2–3 horas por semana
A tu ritmo
Avanza a tu ritmo
Gratis
Verificación opcional disponible

Hay una sesión disponible:

¡Ya se inscribieron 46,036! Una vez finalizada la sesión del curso, será archivadoAbre en una pestaña nueva.
Comienza el 3 dic

Sobre este curso

Omitir Sobre este curso

This course covers the basics of R: a free programming language and software environment used for statistical computing and graphics. R is widely used by data analysts, statisticians, and data scientists around the world. This course covers an introduction to R, from installation to basic statistical functions. You will learn to work with variable and external data sets, write functions, and hear from one of the co-creators of the R language, Robert Gentleman.

De un vistazo

  • Institution StanfordOnline
  • Subject Informática
  • Level Introductory
  • Prerequisites
    • Basic familiarity with computers and productivity software
    • Helpful but not required: experience/background in statistics, a scientific or engineering discipline
  • Language English
  • Video Transcript English
  • Associated skillsComputational Statistics, R (Programming Language)

Lo que aprenderás

Omitir Lo que aprenderás

We will cover:

1. How to download and install R.

2. How to use R in an interactive and easy-to-understand environment.

3. What the key objects are and how we manipulate them in R.

4. Where the objects are stored and how to save our work.

5. All the important data structures: data frames, lists, matrices.

6. How to import data into R and how to save your work.

7. How to manipulate and preprocess data and work with missing values.

8. How to plot your data – an introduction to ggplot2.

9. How to use the wealth of contributed packages to achieve a specific task.

¿Te interesa este curso para tu negocio o equipo?

Capacita a tus empleados en los temas más solicitados con edX para Negocios.