Ir al contenido principalSkip to Xpert Chatbot

MITx: Machine Learning with Python: from Linear Models to Deep Learning.

4.1 stars
229 ratings

An in-depth introduction to the field of machine learning, from linear models to deep learning and reinforcement learning, through hands-on Python projects. -- Part of the MITx MicroMasters program in Statistics and Data Science.

Machine Learning with Python: from Linear Models to Deep Learning.
15 semanas
10–14 horas por semana
Al ritmo del instructor
Con un cronograma específico
Gratis
Verificación opcional disponible

Hay una sesión disponible:

¡Ya se inscribieron 295,272! Una vez finalizada la sesión del curso, será archivadoAbre en una pestaña nueva.
Comienza el 28 ene 2025
Termina el 13 may 2025

Sobre este curso

Omitir Sobre este curso

If you have specific questions about this course, please contact us at sds-mm@mit.edu.

Machine learning methods are commonly used across engineering and sciences, from computer systems to physics. Moreover, commercial sites such as search engines, recommender systems (e.g., Netflix, Amazon), advertisers, and financial institutions employ machine learning algorithms for content recommendation, predicting customer behavior, compliance, or risk.

As a discipline, machine learning tries to design and understand computer programs that learn from experience for the purpose of prediction or control.

In this course, students will learn about principles and algorithms for turning training data into effective automated predictions. We will cover:

  • Representation, over-fitting, regularization, generalization, VC dimension;
  • Clustering, classification, recommender problems, probabilistic modeling, reinforcement learning;
  • On-line algorithms, support vector machines, and neural networks/deep learning.

Students will implement and experiment with the algorithms in several Python projects designed for different practical applications.

This course is part of the MITx MicroMasters Program in Statistics and Data Science. Master the skills needed to be an informed and effective practitioner of data science. You will complete this course and three others from MITx, at a similar pace and level of rigor as an on-campus course at MIT, and then take a virtually-proctored exam to earn your MicroMasters, an academic credential that will demonstrate your proficiency in data science or accelerate your path towards an MIT PhD or a Master's at other universities. To learn more about this program, please visit https://micromasters.mit.edu/ds/.

De un vistazo

  • Associated skillsStatistics, Prediction, Machine Learning Algorithms, Experimentation, Algorithms, Reinforcement Learning, Machine Learning, Sales, Recommender Systems, Python (Programming Language), Support Vector Machine, Artificial Neural Networks, Physics, Deep Learning, Forecasting, Consumer Behaviour, Data Science, Linear Model

Lo que aprenderás

Omitir Lo que aprenderás
  • Understand principles behind machine learning problems such as classification, regression, clustering, and reinforcement learning
  • Implement and analyze models such as linear models, kernel machines, neural networks, and graphical models
  • Choose suitable models for different applications
  • Implement and organize machine learning projects, from training, validation, parameter tuning, to feature engineering.

Plan de estudios

Omitir Plan de estudios

Lectures :

  • Introduction
  • Linear classifiers, separability, perceptron algorithm
  • Maximum margin hyperplane, loss, regularization
  • Stochastic gradient descent, over-fitting, generalization
  • Linear regression
  • Recommender problems, collaborative filtering
  • Non-linear classification, kernels
  • Learning features, Neural networks
  • Deep learning, back propagation
  • Recurrent neural networks
  • Generalization, complexity, VC-dimension
  • Unsupervised learning: clustering
  • Generative models, mixtures
  • Mixtures and the EM algorithm
  • Learning to control: Reinforcement learning
  • Reinforcement learning continued
  • Applications: Natural Language Processing

Projects :

  • Automatic Review Analyzer
  • Digit Recognition with Neural Networks
  • Reinforcement Learning

Preguntas frecuentes

Omitir Preguntas frecuentes

Should you have further inquiries, please go to https://micromasters.mit.edu/ds/ and use the "Contact us" button.

¿Quién puede hacer este curso?

Lamentablemente, las personas residentes en uno o más de los siguientes países o regiones no podrán registrarse para este curso: Irán, Cuba y la región de Crimea en Ucrania. Si bien edX consiguió licencias de la Oficina de Control de Activos Extranjeros de los EE. UU. (U.S. Office of Foreign Assets Control, OFAC) para ofrecer nuestros cursos a personas en estos países y regiones, las licencias que hemos recibido no son lo suficientemente amplias como para permitirnos dictar este curso en todas las ubicaciones. edX lamenta profundamente que las sanciones estadounidenses impidan que ofrezcamos todos nuestros cursos a cualquier persona, sin importar dónde viva.

Este curso es parte del programa Statistics and Data Science (Time Series and Social Sciences Track) MicroMasters

Más información 
Instrucción por expertos
5 cursos de nivel universitario
Dictado por instructores
Las tareas y los exámenes tienen fechas de entrega específicas
1 año 1 mes
10 - 14 horas semanales

¿Te interesa este curso para tu negocio o equipo?

Capacita a tus empleados en los temas más solicitados con edX para Negocios.