Ir al contenido principalSkip to Xpert Chatbot

AdelaideX: Big Data Analytics

Learn key technologies and techniques, including R and Apache Spark, to analyse large-scale data sets to uncover valuable business information.

Big Data Analytics
10 semanas
8–10 horas por semana
A tu ritmo
Avanza a tu ritmo
Gratis
Verificación opcional disponible

Hay una sesión disponible:

¡Ya se inscribieron 51,619! Una vez finalizada la sesión del curso, será archivadoAbre en una pestaña nueva.
Comienza el 20 dic

Sobre este curso

Omitir Sobre este curso

Gain essential skills in today’s digital age to store, process and analyse data to inform business decisions.

In this course, part of the Big Data MicroMasters program, you will develop your knowledge of big data analytics and enhance your programming and mathematical skills. You will learn to use essential analytic tools such as Apache Spark and R.

Topics covered in this course include:

  • cloud-based big data analysis;
  • predictive analytics, including probabilistic and statistical models;
  • application of large-scale data analysis;
  • analysis of problem space and data needs.

By the end of this course, you will be able to approach large-scale data science problems with creativity and initiative.

De un vistazo

  • Language English
  • Video Transcript English
  • Associated programs
  • Associated skillsAnalytic Applications, Data Science, Statistical Modeling, Data Analysis, Big Data Analytics, Creativity, Apache Spark, Big Data

Lo que aprenderás

Omitir Lo que aprenderás
  • How to develop algorithms for the statistical analysis of big data;
  • Knowledge of big data applications;
  • How to use fundamental principles used in predictive analytics;
  • Evaluate and apply appropriate principles, techniques and theories to large-scale data science problems.

Plan de estudios

Omitir Plan de estudios

Section 1: Simple linear regression
Fit a simple linear regression between two variables in R;Interpret output from R;Use models to predict a response variable;Validate the assumptions of the model.

Section 2: Modelling data
Adapt the simple linear regression model in R to deal with multiple variables;Incorporate continuous and categorical variables in their models;Select the best-fitting model by inspecting the R output.

Section 3: Many models
Manipulate nested dataframes in R;Use R to apply simultaneous linear models to large data frames by stratifying the data;Interpret the output of learner models.

Section 4: Classification
Adapt linear models to take into account when the response is a categorical variable;Implement Logistic regression (LR) in R;Implement Generalised linear models (GLMs) in R;Implement Linear discriminant analysis (LDA) in R.

Section 5: Prediction using models
Implement the principles of building a model to do prediction using classification;Split data into training and test sets, perform cross validation and model evaluation metrics;Use model selection for explaining data with models;Analyse the overfitting and bias-variance trade-off in prediction problems.

Section 6: Getting bigger
Set up and apply sparklyr;Use logical verbs in R by applying native sparklyr versions of the verbs.

Section 7: Supervised machine learning with sparklyr
Apply sparklyr to machine learning regression and classification models;Use machine learning models for prediction;Illustrate how distributed computing techniques can be used for “bigger” problems.

Section 8: Deep learning
Use massive amounts of data to train multi-layer networks for classification;Understand some of the guiding principles behind training deep networks, including the use of autoencoders, dropout, regularization, and early termination;Use sparklyr and H2O to train deep networks.

Section 9: Deep learning applications and scaling up
Understand some of the ways in which massive amounts of unlabelled data, and partially labelled data, is used to train neural network models;Leverage existing trained networks for targeting new applications;Implement architectures for object classification and object detection and assess their effectiveness.

Section 10: Bringing it all together
Consolidate your understanding of relationships between the methodologies presented in this course, theirrelative strengths, weaknesses and range of applicability of these methods.

Preguntas frecuentes

Omitir Preguntas frecuentes

Question: This course is self-paced, but is there a course end date?
Answer: Yes. The current course run ends on 31 December 2026.

¿Quién puede hacer este curso?

Lamentablemente, las personas residentes en uno o más de los siguientes países o regiones no podrán registrarse para este curso: Irán, Cuba y la región de Crimea en Ucrania. Si bien edX consiguió licencias de la Oficina de Control de Activos Extranjeros de los EE. UU. (U.S. Office of Foreign Assets Control, OFAC) para ofrecer nuestros cursos a personas en estos países y regiones, las licencias que hemos recibido no son lo suficientemente amplias como para permitirnos dictar este curso en todas las ubicaciones. edX lamenta profundamente que las sanciones estadounidenses impidan que ofrezcamos todos nuestros cursos a cualquier persona, sin importar dónde viva.

Este curso es parte del programa Big Data MicroMasters

Más información 
Instrucción por expertos
5 cursos de nivel universitario
A tu ritmo
Avanza a tu ritmo
1 año
7 - 9 horas semanales

¿Te interesa este curso para tu negocio o equipo?

Capacita a tus empleados en los temas más solicitados con edX para Negocios.