Skip to main contentSkip to Xpert Chatbot

UMD, USMx: Data Science and Agile Systems for Product Management

4.8 stars
8 ratings

Deliver faster, higher quality, and fault-tolerant products regardless of industry using the latest in Agile, DevOps, and Data Science.

Data Science and Agile Systems for Product Management
4 weeks
2–3 hours per week
Self-paced
Progress at your own speed
Free
Optional upgrade available

There is one session available:

16,570 already enrolled! After a course session ends, it will be archivedOpens in a new tab.
Starts Oct 31

About this course

Skip About this course

Modern systems today must be designed for agility in order to outpace the competition. Concepts like Agile, DevOps, and Data Science were once considered only for the technology-based companies. Today that means every company. Because there is no greater currency than timely information for optimizing operations and meeting the needs of customers.

Modern product management requires that every development and operations value stream is identified and continuously improved. This means using Lean and DevOps principles to streamline handoffs and information flows across teams. It means reorienting towards self-service and automation wherever possible. And to avoid incrementalism, it means a robust Agile development process to keep innovations important and aggressive enough to make noticeable improvements in value delivery.

Agile systems in a DevOps environment requires that products are built completely differently from a traditional designs. Modularity, open set architectures, and flexible data management paradigms are a starting point. The evolutionary nature of the product with so much change enables functionality, design, and technology to drive and influence each other simultaneously. And beneath it all is a data collection and feedback loop essential for anticipating and reacting to business needs both for operations and marketing.

Data science and analytics are the lifeblood of any product organization, and enable product managers to tackle risks early. Luckily, new technologies allow us to collect and integrate data without extreme upfront constraints and onerous controls. This means all data is fair game, and when tagged and stored properly, can be made available at nearly any scale for preparation, visualization, analysis, and modeling.

We’ll teach you the paradigms, processes, and introduce some key technologies that make the data-driven product organization the optimal competitor in the market.

At a glance

  • Language: English
  • Video Transcripts: اَلْعَرَبِيَّةُ, Deutsch, English, Español, Français, हिन्दी, Bahasa Indonesia, Português, Kiswahili, తెలుగు, Türkçe, 中文
  • Associated skills:Design And Technology, Operations, Influencing Skills, Modularity, Fault Tolerance, Data Management, DevOps, Product Management, Data Collection, Automation, Agile Methodology, Data Science, Self Service Technologies

What you'll learn

Skip What you'll learn
  • Designing and modeling for fast feedback and idea sharing
  • System optimization with open architectures
  • Validating functions and verifying performance
  • Leveraging and enabling the system designs, platforms, and ecosystems
  • Lean Startup and Product Innovation Analytics
  • Developing the data collection and preparation pipeline for products and services
  • Analyzing the performance and testing hypotheses for usability, fast-feedback, and growth
  • Customer experience (CX) validation and enhancement leveraging usability analytics

Module 1: Agile Systems Engineering

Module 2: DevOps Principles for Business Agility

Module 3: Data Science for Product Risk Management

Module 4: Implementing Data-Driven Controls using Technology and Teams

This course is part of Product Management Professional Certificate Program

Learn more 
Expert instruction
5 skill-building courses
Self-paced
Progress at your own speed
5 months
2 - 3 hours per week

Interested in this course for your business or team?

Train your employees in the most in-demand topics, with edX For Business.