Most popular programs
Trending now
In this course, you will explore and learn the best methods and practices in recommender systems, which are an essential component of the online ecosystem. This course was developed by IVADO and HEC Montréal as part of a workshop that took place in Montreal. You will be accompanied throughout and given concrete examples by seven international experts from both Academia and Industry.
Recommender systems are algorithms that find patterns in user behaviour to improve personalized experiences and understand their environment. They are ubiquitous and are most often used to recommend items to users, for example, books, movies, but also possible friends, food recipes or even relevant documentation in large software projects, or papers of interest to scientists.
The content of this MOOC is an introduction to the field of recommender systems. The outline includes: machine learning for recommender systems followed by an introduction to evaluation methods; advanced modelling; contextual bandits; ranking methods; and fairness and discrimination in recommender systems.
The course is primarily intended for industry professionals and academics with basic (first-year undergraduate) knowledge in mathematics and programming (ideally Python). Graduate students in science and engineering (mainly those who are not yet familiar with machine learning and recommender systems) may find this content instructive and compelling. The content of this course will also be of great use to whomever uses or is interested in AI, in any other way.
We estimate that it takes 6 weeks to follow this class. The course is divided into relevant segments that you may watch at your own pace. There are comprehensive quizzes at the end of each segment to evaluate your understanding of the content. You will also practice recommender systems algorithms thanks to a tutorial guided by an expert. Also, a second self-practice module will be offered to participants who will register for the course with the Verified Certificate.
We welcome you to this special learning journey of Recommender Systems: Behind the Screen!
This course is brought to you by IVADO, HEC Montréal and Université de Montréal.
IVADO is a Québec-wide collaborative institute in the field of digital intelligence.
HEC Montréal is a French-language university offering internationally renowned management education and research.
Université de Montréal is one of the world’s leading research universities.
Minimal knowledge of programming (ideally in Python) and basic (first year undergraduate) knowledge in mathematics (linear algebra, statistics).
At the end of the MOOC, participants should be able to:
MODULE 1 Machine Learning for Recommender Systems
MODULE TUTORIAL Matrix Factorization
MODULE 2 Evaluations for Recommender Systems
MODULE 3 Advanced modelling
MODULE SELF-PRACTICE Autoencoders (this module is assessed and offered only to participants who register for the course with the Verified Certificate)
MODULE 4 Contextual Bandits
MODULE 5 Learning to Rank
MODULE 6 Fairness and Discrimination in Recommender Systems
Ph.D. Assistant Professor, Department of Decision Sciences, HEC Montreal Member of Mila – Quebec Artificial Intelligence Institute • HEC Montreal, Mila
Ph.D, Research Scientist, Google | Member of Mila – Quebec Artificial Intelligence Institute • Google, Mila
Ph.D. Assistant Professor, Department of Computer Science, Boise State University • Boise State University
What is the complete list of speakers for this course?
Laurent CHARLIN
Fernando DIAZ
Michael EKSTRAND
Dora JAMBOR
Dawen LIANG
James McINERNEY
Bhaskar MITRA