Skip to main contentSkip to Xpert Chatbot

HarvardX: Machine Learning and AI with Python

3.9 stars
9 ratings

Learn how to use decision trees, the foundational algorithm for your understanding of machine learning and artificial intelligence.

Machine Learning and AI with Python
6 weeks
4–5 hours per week
Self-paced
Progress at your own speed
Free
Optional upgrade available

There is one session available:

38,402 already enrolled! After a course session ends, it will be archivedOpens in a new tab.
Starts Nov 20

About this course

Skip About this course

It’s time to make a decision: beach or mountains? When choosing where you want to go for vacation, it can be simple. The options may be a or b. From a decision-making standpoint, it’s easy for the brain to process this decision tree. But, what happens when you’re faced with more complex, multifaceted decisions? You might make a comprehensive pro/con list, rank ordering the most important considerations. But, that can take endless amounts of time that you might not have to spare. When parsing through thousands or millions of data points, you and your organization need to tap into a more sophisticated approach.

The solution? Harnessing the power of artificial intelligence (AI) through machine learning to enhance your decision-making processes. Machine learning with Python can not only help organize data, but machines can also be taught to analyze and learn from disparate data sets – forming hypotheses, creating predictions, and improving decisions.

In Machine Learning and AI with Python, you will explore the most basic algorithm as a basis for your learning and understanding of machine learning: decision trees. Developing your core skills in machine learning will create the foundation for expanding your knowledge into bagging and random forests, and from there into more complex algorithms like gradient boosting.

Using real-world cases and sample data sets, you will examine processes, chart your expectations, review the results, and measure the effectiveness of the machine’s techniques.

Throughout the course, you will witness the evolution of the machine learning models, incorporating additional data and criteria – testing your predictions and analyzing the results along the way to avoid overtraining your data, mitigating overfitting and preventing biased outcomes.

Put your data to work through machine learning with Python.

At a glance

What you'll learn

Skip What you'll learn

In this course, you will:

  • Explore advanced data science challenges through sample data sets, decision trees, random forests, and machine learning models
  • Train your model to predict the most effective way to handle a problem
  • Examine machine learning results, recognize data bias in machine learning, and avoid underfitting or overfitting data
  • Build a foundation for the use of Python libraries in machine learning and artificial intelligence, preparing you for future Python study
  • Build on your Python experience, preparing you for a career in advanced data science

Who can take this course?

Unfortunately, learners residing in one or more of the following countries or regions will not be able to register for this course: Iran, Cuba and the Crimea region of Ukraine. While edX has sought licenses from the U.S. Office of Foreign Assets Control (OFAC) to offer our courses to learners in these countries and regions, the licenses we have received are not broad enough to allow us to offer this course in all locations. edX truly regrets that U.S. sanctions prevent us from offering all of our courses to everyone, no matter where they live.

This course is part of Data Science and Machine Learning Professional Certificate Program

Learn more 
Expert instruction
2 skill-building courses
Self-paced
Progress at your own speed
4 months
3 - 4 hours per week

Interested in this course for your business or team?

Train your employees in the most in-demand topics, with edX For Business.