Most popular programs
Trending now
In this course, three methods are presented for pricing an option.
Then the assumption of constant volatility is challenged, due to the presence of the volatility smile, which is formally defined and shown to be empirically observed in all derivatives markets. Monte Carlo simulations are run to generate a distribution with kurtosis -- a mixture of normal distributions.
Finally, the Heston Model, which relaxes the assumption of constant volatility is presented.
Sample code is provided to run the Heston model. The corresponding implied volatilities are graphed and shown to replicate the volatility smile.
Define and discuss the Greek sensitivities of the option price to underlying variables.
Price European and American options, and compare their methods and values.
Identify weaknesses within the assumptions of Black Sholes, particularly constant volatility.
To implement and price the Heston model to address the limitation of constant volatility.
To define the volatility smile, and illustrate how the output from the Heston Model can replicate it.
Module 01: Greeks
Lesson 01: Delta and Gamma
Lesson 02: Theta
Lesson 03: Vega
Lesson 04: Stock Pinning
Module 02: American Options
Lesson 01: Introduction
Lesson 02: Monte Carlo Simulation
Lesson 03: Books to Read
Module 03: Volatility