Ir al contenido principalSkip to Xpert Chatbot

HarvardX: Principles, Statistical and Computational Tools for Reproducible Data Science

4.2 stars
12 ratings

Learn skills and tools that support data science and reproducible research, to ensure you can trust your own research results, reproduce them yourself, and communicate them to others.

8 semanas
3–8 horas por semana
A tu ritmo
Avanza a tu ritmo
Gratis
Verificación opcional disponible

Elige tu sesión:

¡Ya se inscribieron 9,151! Una vez finalizada la sesión del curso, será archivadoAbre en una pestaña nueva.
Comienza el 15 nov
Termina el 11 dic
Comienza el 11 dic

Sobre este curso

Omitir Sobre este curso

Today the principles and techniques of reproducible research are more important than ever, across diverse disciplines from astrophysics to political science. No one wants to do research that can’t be reproduced. Thus, this course is really for anyone who is doing any data intensive research. While many of us come from a biomedical background, this course is for a broad audience of data scientists.

To meet the needs of the scientific community, this course will examine the fundamentals of methods and tools for reproducible research. Led by experienced faculty from the Harvard T.H. Chan School of Public Health, you will participate in six modules that will include several case studies that illustrate the significant impact of reproducible research methods on scientific discovery.

This course will appeal to students and professionals in biostatistics, computational biology, bioinformatics, and data science. The course content will blend video lectures, case studies, peer-to-peer engagements and use of computational tools and platforms (such as R/RStudio, and Git/Github), culminating in a final presentation of a final reproducible research project.

We’ll cover Fundamentals of Reproducible Science; Case Studies; Data Provenance; Statistical Methods for Reproducible Science; Computational Tools for Reproducible Science; and Reproducible Reporting Science. These concepts are intended to translate to fields throughout the data sciences: physical and life sciences, applied mathematics and statistics, and computing.

Consider this course a survey of best practices: we’d like to make you aware of pitfalls in reproducible data science, some failure - and success - stories in the past, and tools and design patterns that might help make it all easier. But ultimately it’ll be up to you to take the skills you learn from this course to create your own environment in which you can easily carry out reproducible research, and to encourage and integrate with similar environments for your collaborators and colleagues. We look forward to seeing you in this course and the research you do in the future!

De un vistazo

  • Institution HarvardX
  • Subject Análisis de datos
  • Level Intermediate
  • Prerequisites
    • Basic knowledge of Rand Git
    • A computer that is capable of downloading software to run on it.
  • Language English
  • Video Transcripts اَلْعَرَبِيَّةُ, Deutsch, English, Español, Français, हिन्दी, Bahasa Indonesia, Português, Kiswahili, తెలుగు, Türkçe, 中文
  • Associated skillsR (Programming Language), Public Health, Life Sciences, Applied Mathematics, Presentations, Astrophysics, Data Science, Research, Statistical Methods, Political Sciences, Git (Version Control System), Computational Tools, Bioinformatics, Computational Biology, Github, Biostatistics, Software Design Patterns, Research Methodologies, RStudio, Statistics

Lo que aprenderás

Omitir Lo que aprenderás
  • Understand a series of concepts, thought patterns, analysis paradigms, and computational and statistical tools, that together support data science and reproducible research.
  • Fundamentals of reproducible science using case studies that illustrate various practices
  • Key elements for ensuring data provenance and reproducible experimental design
  • Statistical methods for reproducible data analysis
  • Computational tools for reproducible data analysis and version control (Git/GitHub, Emacs/RStudio/Spyder), reproducible data (Data repositories/Dataverse) and reproducible dynamic report generation (Rmarkdown/R Notebook/Jupyter/Pandoc), and workflows.
  • How to develop new methods and tools for reproducible research and reporting
  • How to write your own reproducible paper.

Plan de estudios

Omitir Plan de estudios

Module 1: Introduction to Reproducible Science

Module 2: Fundamentals of Reproducible Science

  • Definitions and Concepts
  • Factors affecting reproducibility

Module 3: Case Studies in Reproducible Research

Module 4: Data Provenance

  • Project Design
  • Journal Requirements
  • Repositories
  • Privacy and Security

Module 5: Computational Tools for Reproducible Science

  • R and Rstudio
  • Python, Git, and GitHub
  • Creating a repository
  • Data sources
  • Dynamic report generation
  • Workflows

Module 6: A optional deeper dive into Statistical Methods for Reproducible Science

  • Prediction Models
  • Coefficient of determination
  • Brier score
  • Area Under the Curve (AUC)
  • Concordance in survival analysis
  • Cross-validation
  • Bootstrap

  • Simulations

  • Clustering

¿Quién puede hacer este curso?

Lamentablemente, las personas residentes en uno o más de los siguientes países o regiones no podrán registrarse para este curso: Irán, Cuba y la región de Crimea en Ucrania. Si bien edX consiguió licencias de la Oficina de Control de Activos Extranjeros de los EE. UU. (U.S. Office of Foreign Assets Control, OFAC) para ofrecer nuestros cursos a personas en estos países y regiones, las licencias que hemos recibido no son lo suficientemente amplias como para permitirnos dictar este curso en todas las ubicaciones. edX lamenta profundamente que las sanciones estadounidenses impidan que ofrezcamos todos nuestros cursos a cualquier persona, sin importar dónde viva.

¿Te interesa este curso para tu negocio o equipo?

Capacita a tus empleados en los temas más solicitados con edX para Negocios.