Most popular programs
Trending now
What is Predictive Analytics? These methods lie behind the most transformative technologies of the last decade, that go under the more general name Artificial Intelligence or AI. In this course, the focus is on the skills that will allow you to fit a model to data, and measure how well it performs. We will be doing enough data science so that you get hands-on familiarity with understanding a dataset, fitting a model to it, and generating predictions.
What is Predictive Analytics? These methods lie behind the most transformative technologies of the last decade, that go under the more general name Artificial Intelligence or AI. In this course, the focus is on the skills that will allow you to fit a model to data, and measure how well it performs.
These skills also go under the names "machine learning" and "data science," the latter being a broader term than machine learning or predictive analytics but narrower than AI. This course is part of the Machine Learning Operations (MLOps) Program. We will be doing enough data science so that you get hands-on familiarity with understanding a dataset, fitting a model to it, and generating predictions. As you get further into the program, you will learn how to fit that model into a machine learning pipeline.
You will get hands-on experience with the top techniques in supervised learning: linear and logistic regression modeling, decision trees, neural networks, ensembles, and much more.
But most importantly, by the end of this course, you will know
We will present Python code to illustrate how to fit models, so we assume some familiarity with Python. Some exposure to basic statistics is also helpful, more from a comfort perspective than from a need to dive deep into statistical routines.
After completing this course, you will be able to:
Develop a variety of machine learning algorithms for both classification and regression, including linear and logistic regression, decisions trees and neural networks
Evaluate machine learning model performance with appropriate metrics
Combine multiple models into ensembles to improve performance
Explain the special contribution that deep learning has made to machine learning task
Week 1 – Data Structures; Linear and Logistic Regression
Week 2 - Assessing Models; Decision Trees
Week 3 – Ensembles
Week 4 - Neural Networks
Who can take this course?
Unfortunately, learners residing in one or more of the following countries or regions will not be able to register for this course: Iran, Cuba and the Crimea region of Ukraine. While edX has sought licenses from the U.S. Office of Foreign Assets Control (OFAC) to offer our courses to learners in these countries and regions, the licenses we have received are not broad enough to allow us to offer this course in all locations. edX truly regrets that U.S. sanctions prevent us from offering all of our courses to everyone, no matter where they live.
Who can take this course?
Unfortunately, learners residing in one or more of the following countries or regions will not be able to register for this course: Iran, Cuba and the Crimea region of Ukraine. While edX has sought licenses from the U.S. Office of Foreign Assets Control (OFAC) to offer our courses to learners in these countries and regions, the licenses we have received are not broad enough to allow us to offer this course in all locations. edX truly regrets that U.S. sanctions prevent us from offering all of our courses to everyone, no matter where they live.