Skip to main contentSkip to Xpert Chatbot

HarvardX: Introduction to Bioconductor

4.5 stars
10 ratings

The structure, annotation, normalization, and interpretation of genome scale assays.

4 weeks
2–4 hours per week
Self-paced
Progress at your own speed
Free
Optional upgrade available

There is one session available:

54,078 already enrolled! After a course session ends, it will be archivedOpens in a new tab.
Starts Dec 3

About this course

Skip About this course

We begin with an introduction to the relevant biology, explaining what we measure and why. Then we focus on the two main measurement technologies: next generation sequencing and microarrays. We then move on to describing how raw data and experimental information are imported into R and how we use Bioconductor classes to organize these data, whether generated locally, or harvested from public repositories or institutional archives. Genomic features are generally identified using intervals in genomic coordinates, and highly efficient algorithms for computing with genomic intervals will be examined in detail. Statistical methods for testing gene-centric or pathway-centric hypotheses with genome-scale data are found in packages such as limma, some of these techniques will be illustrated in lectures and labs.

Given the diversity in educational background of our students we have divided the series into seven parts. You can take the entire series or individual courses that interest you. If you are a statistician you should consider skipping the first two or three courses, similarly, if you are biologists you should consider skipping some of the introductory biology lectures. Note that the statistics and programming aspects of the class ramp up in difficulty relatively quickly across the first three courses. By the third course will be teaching advanced statistical concepts such as hierarchical models and by the fourth advanced software engineering skills, such as parallel computing and reproducible research concepts.

These courses make up two Professional Certificates and are self-paced:

Data Analysis for Life Sciences:

Genomics Data Analysis:

This class was supported in part by NIH grant R25GM114818.

HarvardX requires individuals who enroll in its courses on edX to abide by the terms of the edX honor code. HarvardX will take appropriate corrective action in response to violations of the edX honor code, which may include dismissal from the HarvardX course; revocation of any certificates received for the HarvardX course; or other remedies as circumstances warrant. No refunds will be issued in the case of corrective action for such violations. Enrollees who are taking HarvardX courses as part of another program will also be governed by the academic policies of those programs.

HarvardX pursues the science of learning. By registering as an online learner in an HX course, you will also participate in research about learning. Read our research statement to learn more.

Harvard University and HarvardX are committed to maintaining a safe and healthy educational and work environment in which no member of the community is excluded from participation in, denied the benefits of, or subjected to discrimination or harassment in our program. All members of the HarvardX community are expected to abide by Harvard policies on nondiscrimination, including sexual harassment, and the edX Terms of Service. If you have any questions or concerns, please contact harvardx@harvard.edu and/or report your experience through the edX contact form.

At a glance

  • Language: English
  • Video Transcript: English
  • Associated skills:Next-Generation Sequencing, Software Engineering, Bioconductor (Bioinformatics Software), R (Programming Language), Statistical Inference, Linear Model, Matrix Algebra, Biology, Microarrays, DNA Sequencing, Functional Genomics, Statistical Methods, Statistics, Data Analysis, Life Sciences, Data Warehousing, Algorithms

What you'll learn

Skip What you'll learn
  • What we measure with high-throughput technologies and why
  • Introduction to high-throughput technologies
    • Next Generation Sequencing
    • Microarrays
  • Preprocessing and Normalization
  • The Bioconductor Genomic Ranges Utilities
  • Genomic Annotation

This course is part of Data Analysis for Genomics Professional Certificate Program

Learn more 
Expert instruction
3 skill-building courses
Self-paced
Progress at your own speed
3 months
2 - 4 hours per week

Interested in this course for your business or team?

Train your employees in the most in-demand topics, with edX For Business.