edX Online
StanfordOnline: Convex Optimization

StanfordOnline: Convex Optimization

This course concentrates on recognizing and solving convex optimization problems that arise in applications. The syllabus includes: convex sets, functions, and optimization problems; basics of convex analysis; least-squares, linear and quadratic programs, semidefinite programming, minimax, extremal volume, and other problems; optimality conditions, duality theory, theorems of alternative, and applications; interior-point methods; applications to signal processing, statistics and machine learning, control and mechanical engineering, digital and analog circuit design, and finance.

There is one session available:

27,933 already enrolled!

Starts Jan 21
Ends Aug 31